Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra. | −h4−2h3−3h2+h1 | g1 | g2 | g5 |
weight | 0 | ω1 | ω3 | ω1+ω3 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | ω1+10ψ | ω3−10ψ | ω1+ω3 |
Isotypical components + highest weight | V0 → (0, 0, 0, 0) | Vω1+10ψ → (1, 0, 0, 10) | Vω3−10ψ → (0, 0, 1, -10) | Vω1+ω3 → (1, 0, 1, 0) | ||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | ||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
| ||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω1 −ω1+ω2 −ω2+ω3 −ω3 | ω3 ω2−ω3 ω1−ω2 −ω1 | ω1+ω3 −ω1+ω2+ω3 ω1+ω2−ω3 −ω2+2ω3 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 ω1−2ω2+ω3 ω2−2ω3 −2ω1+ω2 −ω1−ω2+ω3 ω1−ω2−ω3 −ω1−ω3 | ||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω1+10ψ −ω1+ω2+10ψ −ω2+ω3+10ψ −ω3+10ψ | ω3−10ψ ω2−ω3−10ψ ω1−ω2−10ψ −ω1−10ψ | ω1+ω3 −ω1+ω2+ω3 ω1+ω2−ω3 −ω2+2ω3 −ω1+2ω2−ω3 2ω1−ω2 0 0 0 ω1−2ω2+ω3 ω2−2ω3 −2ω1+ω2 −ω1−ω2+ω3 ω1−ω2−ω3 −ω1−ω3 | ||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω1+10ψ⊕M−ω2+ω3+10ψ⊕M−ω1+ω2+10ψ⊕M−ω3+10ψ | Mω3−10ψ⊕Mω1−ω2−10ψ⊕Mω2−ω3−10ψ⊕M−ω1−10ψ | Mω1+ω3⊕M−ω2+2ω3⊕M−ω1+ω2+ω3⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕Mω1−2ω2+ω3⊕3M0⊕M−ω1+2ω2−ω3⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕Mω1−ω2−ω3⊕Mω2−2ω3⊕M−ω1−ω3 | ||||||||||||||||||||||||||||
Isotypic character | M0 | Mω1+10ψ⊕M−ω2+ω3+10ψ⊕M−ω1+ω2+10ψ⊕M−ω3+10ψ | Mω3−10ψ⊕Mω1−ω2−10ψ⊕Mω2−ω3−10ψ⊕M−ω1−10ψ | Mω1+ω3⊕M−ω2+2ω3⊕M−ω1+ω2+ω3⊕M2ω1−ω2⊕Mω1+ω2−ω3⊕Mω1−2ω2+ω3⊕3M0⊕M−ω1+2ω2−ω3⊕M−ω1−ω2+ω3⊕M−2ω1+ω2⊕Mω1−ω2−ω3⊕Mω2−2ω3⊕M−ω1−ω3 |